Application of the multiquadric method for numerical solution of elliptic partial differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of the Multiquadric Method for Numerical Solution of Elliptic Partial Differential Equations

We have used the multiquadric (MQ) approximation scheme for the solution of elliptic partial differential equations with Dirichlet and/or Neumann boundary conditions. The scheme has the advantage of using the data points in arbitrary locations with an arbitrary ordering. Two-dimensional Laplace, Poisson, and biharmonic equations describing the various physical processes have been taken as the t...

متن کامل

Application of the block backward differential formula for numerical solution of Volterra integro-differential equations

In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...

متن کامل

A Meshless Method for Numerical Solution of Fractional Differential Equations

In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...

متن کامل

Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations

ii Preface Radial Basis Function (RBF) methods have become the primary tool for interpolating multidimensional scattered data. RBF methods also have become important tools for solving Partial Differential Equations (PDEs) in complexly shaped domains. Classical methods for the numerical solution of PDEs (finite difference, finite element, finite volume, and pseudospectral methods) are based on p...

متن کامل

A Generalized Conjugate Gradient Method for the Numerical Solution of Elliptic Partial Differential Equations

We consider a generalized conjugate gradient method for solving sparse, symmetric, positive-definite systems of linear equations, principally those arising from the discretization of boundary value problems for elliptic partial differential equations. The method is based on splitting off from the original coefficient matrix a symmetric, positive-definiteonethat corresponds to a more easily solv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 1997

ISSN: 0096-3003

DOI: 10.1016/s0096-3003(96)00109-9